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Abstract

In image-based measurements, quantitative image data must be mapped to three-
dimensond object space.  Anaytica photogrammetric methods, which may be used to
accomplish this task, are discussed from the viewpoint of experimentd fluid dynamiciss. The
Direct Linear Transformation (DLT) for camera cdibration, used in pressure sendtive paint, is
summarized. An optimization method for camera cdibration is developed that can be used to
determine the camera cdibration parameters, including those describing lens digtortion, from a
gngleimage. Combined with the DLT method, this method dlows a rgpid and comprehensive
in-gtu camera cdibration and therefore is particularly useful for quantitetive flow visudization
and other measurements such as modd attitude and deformation in production wind tunnels.
The paper dso includes a brief description of typical photogrammetric gpplications to
temperature- and pressure-sengtive paint measurements and model deformation measurements
inwind tunnels
1. Introduction

Flow visudizations and videometric (or video photogrammetric) measurements produce
data in the form of images. In generd, an image is the result of a pergpective projection of a
three-dimensond object to two dimensions. In contrast to “quditative’ flow visudization
methods, “quantitative’” techniques seek to extract numericd data from images. In many
ingtances, the precise location of a point in three-dimensond space is required, in addition to
the value of some quantity at thet location. When the rendered object is sgnificantly three-
dimensond, smple image processng schemes, such as polynomid warping, may not be
aufficient. In generd, photogrammetric methods can be used to determine the relaionship
between three-dimensond object coordinates and corresponding two-dimensiona image
coordinates [1-3]. This fidd was origindly developed to determine topography using aerid
photography with metric cameras.  Due largdly to the rgpid development of CCD video
cameras and computer, photogrammetric methods using these techniques have been applied
recently to numerous non-topographic applications. However, photogrammetric techniques,
while not in general widespread use in wind tunne tests, have been used recently for luminescent
paint and modd deformation measurements. Donovan et d. [4], Bdl and McLachlan [5], and
Le Sant and Merienne [6] have described the gpplication of these methods to luminescent paint
imaging. In addition, photogrammetric measurements of modd deformation in wind tunnels
have been reviewed by Burner et d. [7] and Liu et d. [8]. Perhaps because of the difficulties
associated with using the terminology of a different discipline, the gpplication of non-topographic
photogrammetry to quantitative flow visudization, while straightforward conceptudly and quite
useful, may be filled with pitfdls. In this paper, an optimization method for rgpid and
comprehengve camera calibration is developed that is particularly suitable to photogrammetric
goplications for wind tunnd testing since productivity is not negatively impacted. In addition,
results of applying photogrammetry to temperature- and pressure-sendtive paints (TSP and
PSP) and mode deformation measurements are presented.
2. Collinearity Equations

Image-based measurement techniques extract data from two-dimensiond (2D) images
and map them into three-dimensond (3D) object space.  Photogrammetry provides a



relationship between 3D coordinates in object space and corresponding 2D coordinates in
images [1-3]. The fundamenta problem is to determine object space coordinates ( X,Y, Z)

given the corresponding image coordinates (x,y). Figure 1 illudrates the camera imaging

process. The lens of the camerais modeed by a single point known as the perspective center,
the location of which in object spaceis (X., Y;, Z.). Likewise, the orientation of the cameraiis

characterized by three Euler orientation angles. The orientation angles and location of the
perspective center are referred to in photogrammetry as the exterior orientation parameters.
The object point, perspective center and image point lie dong a sraight line for a “perfect”
camera. This rdaionship is described by the collinearity equations, the fundamental equations
of photogrammetry. On the other hand, the relationship between the perspective center and the
image coordinate system is defined by the camera interior orientation parameters, namely, the
camera principa distance ¢ and the photogrammetric principa-point location (X,,y,). The
principd distance, which equds the camera focd length for a camera focused at infinity, is the
perpendicular distance from the perspective center to the image plane, whereas the
photogrammetric principa-point is where a perpendicular line from the perspective center
intersects the image plane. Due to lens digtortion, however, perturbations to the imaging
process lead to departures from collinearity that can be represented by the shifts dx and dy of
the image point from its “ided” position on the image plane. The shifts dx and dy are modeled
and characterized by a number of lens distortion parameters.

In photogrammetric gpplications for wind tunnel testing, high contrast fiducia targets are
usudly placed on amodd surface to determine the relationship between image and object space
coordinates. The image and object space coordinates of the targets are related by the
collinearity condition in which the image vector is digned with the vector from the perspective
center to the object point
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where M is the rotation matrix, | isascaefactor, and p, = (X,, ¥,) " and P, = (X,,Y,, Z,)"
are the image and object space coordinates of the nth target, respectively. Algebrac
manipulation of (1) yields the well-known callinearity equations (with the distortion terms dx and
dy) relaing the nth target location in object space to the corresponding point on image plane,
X, - Xp+dX:- lel( X - Xc)+mlz(Yn - Yc)+ml3(zn - Zc) :-Ci,
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wherem; (i, ] = 1, 2, 3) are the dements of the rotation matrix M that are functions of the Euler
orientation angles (w, f k),




m,, = cosf cosk

m,, =sinwsinf cosk +coswsink
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m,, =- sinwsinf sink + coswcosk 3
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The orientation angles (w, f,k) are essentidly the pitch, yaw, and roll angles of the camerain
the established coordinate system. Theterms dx and dy are the image coordinate shifts induced
by lens distortion. The lens digtortion terms can be modeled by the sum of the radid digtortion
and decentering distortion [9, 10]

dx=dx, +dxy anddy=dy, +dyy, 4
where, assuming the optica axis of the lensis perpendicular to the image plane
dx, =Ky(X,'- X, )% +Ko(X,'- X, )r?,

dy, =Ky(Yn'- ¥p)r2 +Ko(y,'- yp)rs,

dxd = Pl[ r2 +2(Xn" Xp )2] +2P2(Xn" Xp )( yn" yp) ’ (5)

dyd = Pz[rz +2(ynl' yp)z] +2P1(an' Xp )( ynl' yp )’
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Here, K; and K are the radid digtortion parameters, P; and P, are the decentering distortion
parameters, and X' and y' are the undistorted coordinates in image. When the lens ditortion is
small, the unknown undistorted coordinates can be approximated by the known distorted
coordinates, i.e, X,'»x, and y,'»y,. For large distortion, iterative procedures can be
employed to determine the appropriate undistorted coordinates to improve the accuracy of the
esimate.  The fdlowing iterative relaions are used: (x, )°=x, and (y, )’ =vy,,
(%) =5 +dX[(x ) (Y ) T and (v )X =y, +dy[(% ) .(Va')*], where
the superscripted iteration index is k =0, 1, 2---.

The collinearity equations (2) contain the camera parameters to be determined by

celibration. The parameter sets (w, f,k, X, Y,, Z.), (C X, Y,), and (K;,K,,P,P,) in

(2) are the exterior orientation, interior orientation, and lens distortion parameters of a camera
regpectively.  Anaytica camera cdibration techniques utilize the collinearity equations and
digtortion terms to determine these camera parameters [11, 12]. Since EQ. (2) is non-linear,
iterative methods of least squares estimation have been used as a standard technique for the
solution of the collinearity equations in photogrammetry [1-3]. However, direct recovery of the



interior orientation parameters is often impeded by inverson of a nearly singular normal-
equation-matrix of the least-squares problem. The singularity of the normal-equation-matrix
mainly results from strong correlation between the exterior and interior orientation parameters.

In order to reduce the correlaion between these parameters and enhance the
determinability of (c, xp,, y,,), the use of multiple camera stations, varying image scales,
different camera roll angles and a well-distributed target field in three dimensons has been
suggested by Fraser [9, 13]. Nevertheless, the multiple-gtation, multiple-image method for
camera cdlibration is not easy to use in wind tunnds where only a limited number of windows
are avallable for cameras and the positions of cameras are fixed. Thus, a sngle-image method
of on-the-job camera calibration is desrable. The optimization method described in section 4 is
asngle-image, automatic camera cdibration method that eiminates the sngularity problem.

3. Direct Linear Transformation

The Direct Linear Transformation (DLT), originaly proposed by Abdd-Aziz and Karara
[14], can be very useful for determining initid values of the parameters. The DLT equations can
be obtained by smply rearranging and combining terms of the collinearity equations, i.e,

L X, +LY, + LZ, L, - (X +dX)(L X, + LY, + L, Z, +1) =0 6

Lsxn + LGYn + L7Zn + l—s - (yn+dy)(L9xn + LlOYn + LllZn +1): 0 ( )
The DLT parameters L,,--- L,; are rdlated to the camera exterior and interior orientation
parameters (w, f,k, X;, Y, Z;) and (c X, y,) [1]. Unlike the standard collinearity

equations (2), the DLT equations (6) are linear for the DLT parameters when the lens distortion
terms dx and dy are neglected. The matrix form of the linear DLT equations for M targets is
BL=C, where L=(Ly,---Ly;)", C=(X.,Y1, Xy.Yu ) ,» and B is the 2M™ 11
configuration matrix that can be directly obtained from Eq. (6) (see reference 15). A least-
quares solution for L (without requiring an initid guess) is formdly given by
L=@B"By!B'C.

The DLT method is widely used in both non-topographic photogrammetry and machine
vison because of its smplicity. It is dso used for pressure sendtive paint measurements [5].
When dx and dy cannot be ignored, however, iterative solution methods are gill needed and the
DLT method losesits smplicity. In generd, the DLT method can be used to obtain fairly good
vaues of the exterior orientation parameter and the principad distance, athough it gives poor
estimations of the principa-point location (x,,Y,) [15]. However, the DLT method is very
useful since initid gpproximations can be found for other methods such as the optimization
method described below that can be used for amore comprehensive calibration.

4. Optimization Method

In order to develop a smple and robust method for camera calibration, the singularity
problem must be dedlt with when solving the collinearity equaions. An optimization method is
proposed based on the following insght. A strong correlation between the interior and exterior
orientation parameters leads to a singularity of the normal-equation-matrix in the least-squares
problem for the full st of the camera parameters.  Therefore, to diminate the sngularity, the
least-sguares estimation is used only for the exterior orientation parameters, while the interior
orientation and lens distortion parameters are caculated separatdy using an optimization



method. The optimization method contains two separate, but interacting procedures. resection
for the exterior orientation parameters and optimization for the interior orientation and lens
distortion parameters.
4.1 Resection for the exterior orientation parameters
When the image coordinates (x,,,y,) ae in pixels, the collinearity equetions (2) are
expressed as
fi =S %, - xp, +dx+cU/W=0 @
fy=S,¥Yn- yptdy+cV/W=0"
where §, and S, are the horizontal and verticd pixel spacings (mnV/pixd) of a CCD camera,
respectively. In generd, the vertica pixel spacing is fixed and known for a CCD camera, but
the effective horizonta gpacing may be variable depending on the frame grabber used to digitize
theimage. Thus, an additiona parameter, the pixel-spacing-aspect-ratio S,/ S,, is introduced.
We define B, =(0,6,8 X.,Y.,Z. )" for exterior orientation parameters and
B, = (€. Xy, Y. K1, Ky, PPy, S, 1S,)" for the interior orientation and lens distortion
moandsdsof = (x, ¥,) " and Py= (X0, Ve, Z,),
in Eq. (7) can be found by an iterative least-squares solution, referred to in

parameters. For given values of B
b
photogrammetry as “resection”. The linearized collinearity equetions for targets (n= 1, 2, ---,
M) are written as V = A(AB,, ) - | , where AD,, is the correction term for the exterior

orientation parameters, V isthe 2M” 1 residua vector, A isthe 2M” 6 configuration matrix, and
| isthe2M” 1 observation vector. The dementsof A and | are presented in the Appendix. A
leest-squares  solution to minimize the resduds V for the correction term is

AD,=(ATA) ' ATl . Ingenerd, the 6 6 norma-equation-matrix (AT A) can beinverted
without angularity since the interior orientation and lens ditortion parameters are not included in
the least-squares estimation. To obtain such B, that the correction term becomes zero, the
Newton-Raphson iterative method is used for solving the nonlinear equation
(ATAY*ATI =0 for B,,. This approach converges over considerable ranges of the initial
vauesof B, .

Therefore, for agiven B, , the corresponding exterior orientation parameter B, can be

obtained and are symbolically expressed as
b, =RESECTION®;, ). (8)

At this stage, the exterior orientation parameters B, obtained from (8) are not necessarily
correct unless the given interior orientation and lens digtortion parameters B, are accurate.
Obvioudy, an extra condition is needed to obtain correct B;,, and the determination of B;, is
coupled with the resection for B, . The following section describes an optimization problem
to obtain the correct B, .

4.2 Optimization for theinterior orientation and lensdistortion parameters

ex



In order to determine the correct values of B, an extra condition must be given. We
note thet the correct valuesof B;,, are intringc congtants of a camerallens system, and they are
independent of the target locations p,, = (x,, ¥,) ' and P,= (X, Y,, Z,)". Mahematically,
b,, isan invariant under a trandformation (p,,, B,) — (P, By) (M n). By rearanging
the collinearity equations with distortion terms, B;,, can be expressed in the following form

2 WIS, X, - X, +8X)+(S, Yo - Yo+ )] 6

&0 ¢ U+V +
prizg S, x, +dx+cU/W ::G(pn,Pn,E)m,E)ex). ©
Yoy G Sy, tdy+cV/W +

& b

Therefore, for correct valuesof B, the quantity G( p,,, P, , B, ,Pe ) iSan invariant under

the trandformation (p,,, B,) — (P, Py) (M n). In other words, for correct values of

B, , the sandard deviation of G( p,,P,,P;,,Pe ) cdculated over dl targets should be
M

zero, i.e, std(G)=[q (G- <G >)*/(M - 1)]“>=0, where std denotes the standard

n=1
deviaion and <G> denotes the mean vaue. Furthermore, since std(G) 2 O is dways vdid,

the correct B;,, must correspond to the globa minimum point of the function std(G). Hence,
the determination of correct B;, becomes an optimization problem to seek vaues of B, that
minimize the objective function std(G), i.e.,, std(G) ® min. To solve this multiple-dimensond

optimization problem, the sequentid golden section search technique is used because of its
robustness and smplicity [16]. Since the quantity G( p,,,P,.D;,.Pe ) isrdated to B,

the optimization for P ;, is coupled with the resection for B, . Other appropriate objective

functions may aso be used. An obvious choice is the root-mean-square (rms) of the residuals
of calculated object space coordinates of al targets. In fact, wefind thet theuse of std(x,) or

std(y,) inoptimization is qualitetively equivaent to the use of the rms of the residuals
In principle, any component of std(G) = [std(c), std(x,), std(y,)] T can be used as an

objective function snce minimizing one of three components Smultaneoudy leads to minimization
of other components. As will be shown, std(x,) and std(y,) have a smpler topologica

structure near the global minimum point than std(c) . Hence, std(x,) and std(y,) are more

appropriate objective functions for optimization. For example, consder asmulated 3D field of
targets on a step configuration shown in Fig. 2. A typica topologica structure of std(x) is

shown in Fig. 3 neer the globa minimum point (c, X, Y,) = (28, 0.2, 0.08) mm for smulated
image of the target field. Clearly, near the globa minima std(x,)=0, std(x,) exhibits a

gngle “vdley” gdructure such that the optimization problem is wel defined. The function
std(y,) hasasmilar topologica structure in the parametric space.



Generdly, the topologicd structure of std(x,) or std(y,) depends on three-

dimensiondity of the target field. For the step target fidd, the step height H characterizes the
three-dimensiondity. Figure 4 shows the topological structures of std(x,,) for H = 6and 2

inches. Note that the two surfaces are partidly in contact. Evidently, stronger three-
dimengondity of the target fidld with alarger H produces a steeper “valley” in topology. From
the standpoint of optimization, stronger three-dimensiondity leads to faster convergence. Figure
5 shows typical convergence processes of the principa distance for three different step heights.
Other camera parameters have dmilar convergence behavior.  Clearly, srong three-
dimensondity of the target fidd improves convergence rates. For a planar fied of targets
(H = 0), the optimization method does not generdly converge to the true values. Hence, the
optimization method requires a 3D target field.

The topological structure of std(x,) or std(y,) can aso be affected by random

disturbances on the targets. To smulate this effect, the target coordinates in the image are
disurbed by mathematicdly adding a zero-mean random disturbance with a Gaussan
digtribution.  Figure 6 shows the topological structures of std(x) a disturbance levels of

1im and 6im (these disturbance levels correspond to 0.08 and 0.46 pixels for a typica
CCD video camerasystem). The flattening of the sharp “valey” near the minimum point implies
that noise in the image leads to a dower convergence rate and produces larger errors in the
optimization computations. Figure 7 shows typica errors of the interior orientation parameters
(¢, X, Yp) @ functions of the disturbance level, where the correct smulated values of

(c, Xy, Yp) ae (28, 0.2, 0.08) (mm). For atypicd CCD video camera, for example, the

random error in the target centroid measurement is usudly less than 0.3 mm (0.023 pixels).
Thus, the corresponding predicted precision error in the estimated values of (c, xp, y,,) by the

optimization method is no more than 0.02 mm.

The optimization method 4ill requires appropriate initid values to obtain a converged
solution even though its convergence ranges of the initid vaues are quite large. The DLT can
provide initial gpproximate vaues of the exterior orientation parameters (U, 6,8, X.,Y;,Z.)
and the principal distance ¢, wherethe domainof (U, 6, & ) is defined as - 180° £ w £ 180°,
-90° £ £90° and - 180° £k £ 180°. Using the initid approximations given by the DLT,
the optimization method gives more accurate estimates of the camera orientation and lens

digtortion parameters. The standard optimization technique such as the golden section search
method can be used to minimize the objective function std(x,) in the parametric space

(€ Xp, ¥p, K, Ko, PP, §, 1)) . Combined with the DLT, the optimization method alows

arapid and comprehensive automatic camera calibration to obtain 14 camera parameters from
asangle image without requiring aguess of theinitid vaues.
4.3 Laboratory calibrations

Camera cdibrations for an Hitachi CCD camera with a Sony zoom lens (12.5 to 75 mm
focd length) and an 8 mm Cosmicar televison lens were made in the laboratory in order to
evaduate the accuracy of the optimization method. The measurement syslem conssted of a
CCD camera, a persona computer with a Matrox Pulsar frame-grabber board, a step target



plae, and software. A nove target-tracking program developed by High Technology
Corporation was used to track targets and compute target centroids [8]. The CCD aray size
of the Hitachi camera was 8mm by 6mm. The digitized image size was 640 by 480 pixds with
vertical and horizonta pixd spacings equd to 13.0 nm and 12.9 nm, respectively. The random
error in the measurement of target centroids was less than 0.3 nm (0.023 pixels). The 3D
target fidd for camera calibration was provided by a three-step target plate with 54 circular
retro-reflective targets of 0.5 in diameter, a 2.0 in step height H and 2.0 in spacing between
neighboring targets (Figure 8). The coordinates of the targets on the plate were measured a
priori with athree-dimensiond coordinate machine with an accuracy of 0.001 inch.

For comparison, optical techniques described by Burner et al. [17, 18] were aso used
for cdlibration. The laser-illuminated, displaced-reticle technique was used to determine the
horizontal and verticd pixd spacing. The principd-point location was found by the
unexpanded, laser-illumination technique, and the lens distortion parameters were determined
from images of a cdibration plate suitably digned with the camera axis. Figure 9 shows the
principa distance given by the optimization method versus zoom setting for the Sony zoom lens.
Figures 10 shows the principa-point location and radid distortion coefficient K; as a function of
the principal distance for the Sony zoom lens. The error bars in the principal-point location are
determined based on replication cdibration data using the optimization method collected at
different camera roll angles and podtions over two days. The results obtained by the
optimization method are in reasonable agreement with those given by Burner [18] for the same
lens. The optimization method was aso used to cdibrate the Hitachi CCD camera with an 8
mm Cosmicar televison lens. Table 1 ligts the interior orientation and lens distortion parameters
obtained by the optimization method that are consstent with those obtained by the optical
techniques. The accuracy of camera cdibration is usudly represented by the resdud of the
image coordinate calculation. Typicaly, the optimization method has aresidud of one micron or
less in the image plane for an 8mm by 6mm CCD array, depending on the accuracy of the
coordinates of the target plate.

5. Applications

Photogrammetry is required in image-based measurement techniques that seek to extract
data from 2D images and map them to 3D object space. Some typicd applications of
photogrammetry to temperature- and pressure-sendtive paints and model deformation
measurements are described.  Photogrammetry is dso useful for other globd flow visudization
and measurement techniques such as particle tracking velocimetry and particle image
velocimetry [19, 20].

5.1 Temperature- and pressure-sensitive paints

Temperature- and pressure-sendtive paints (TSP and PSP) are globd techniques for
surface temperature and pressure measurements [21, 22].  Photogrammetry is an important
element of the data reduction process snce TSP and PSP data in images must be mapped onto
amode surface in 3D object space. Donovan et d. [4], Bdl and McLachlan [5], and Le Sant
and Merienne [6] have described PSP mapping using photogrammetry. In applications of
photogrammetry to TSP and PSP, the collinearity equations are used for mapping after the
camera is calibrated. Known object space coordinates ( X,Y,Z) are mapped into unknown



image coordinates (x,Y), and then TSP and PSP data a the image points are associated with

the corresponding points in object space. Here, a photogrammetric application to boundary
layer trangtion detection on a three-dimensiona model is presented. A TSP system has been
developed for the purpose of trangition detection and applied to severd three-dimensiona
models over a wide speed range [23]. TSP detects trangition by visudizing the temperature
change caused by different heat trandfer rates in laminar and turbulent flow regimesin atrangent
thermal process. A key element of the system devel opment has been photogrammetric tools for
mapping temperature to a three-dimensiond grid of the modd surface. Figure 11 shows a
trangtion image of a swept-wing modd in Mach 3.5 flow mapped onto the haf of the model
surface grid by using photogrammetry. The bright region corresponds to the turbulent boundary
layer where the heat trandfer rate is higher than that in the laminar boundary layer. The onset of
trangtion is demarcated in the image as a bright parabolic band on the wing where the cross-
flow ingtability mechanism dominates the trangtion process. However, no trangtion is observed
near the centerline of the modd. This is because near the symmetric plane of the modd the
dability is dominated by the Tollmien-Schlichting ingtability mechanism that is weeker than the
crossflow ingability mechaniam. Detailed experimenta and computational studies of trangtion
physics on the swept-wing modd at Mach 3.5 are described in references 23, 24 and 25.
5.2 Modd deformation measur ement

Modd deformation data are required to understand the aeroelastic properties of a model
and correctly interpret measured aerodynamic data for a deformed model. An optica
measurement technique is the videogrammetric modd deformation (VMD) method. In contrast
to the agpplications to TSP and PSP, the collinearity equations are used in a VMD system to
determine spatid coordinates of targets on a modd surface from target centroids in the image
plane in order to compute model deformation (twist and bending) produced by aerodynamic
loads. Burner et d. [7] and Liu et d. [8] have described in detail the VMD systems used in
NASA fadilities, including cameras, lights, targets, image acquidtion, and software for data
reduction. Here, an example is presented of a mode deformation measurement using a sngle-
camera VMD system for a 72in semi-span high-lift model in the NASA Ames 12-Ft pressure
tunndl. Mach number ranged from 0.23 to 0.3, dynamic pressure ranged from 140 to 330 pdf,
Reynolds number ranged from 2.9 to 6.73 million per foot, and angle-of-attack ranged from -6
to 23 degrees. Figure 12(a) shows the wing twist as a function of the angle-of-attack (AOA) at
different panwise locations. The magnitude of twigt increases with AOA until aerodynamic sl
occurs roughly at an AOA of 15 degrees. Figure 12(b) shows the bending of the wing at
different AOAs. Dynamic deformation measurements were aso made in the laboratory on a
rectangular wing with a44 in span and a 24 in chord driven by a mechanica shaker at the wing
tip. Figure 13 shows dynamic AOASs at 86% span for shaker frequencies of 5 Hz and 12 Hz.
The accuracy of the AOA measurements usng the VMD system has been determined by
comparing with a high accuracy rotationd stage (1 arcsecond). The absolute errors in time-
average AOA measurements by the VMD systems were found to vary from afew thousandths
to afew hundredths of a degree over a40° range, depending on the position and orientation of
the camera.

6. Conclusions
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Photogrammetry is an essentid ingredient of many image-based measurement techniques
for wind tunnel testing. One problem in photogrammetry is the camera cdibration, which
determines the camera exterior and interior orientation parameters and lens distortion
parameters. Photogrammetric applications in wind tunnels require a rgpid single-gtation, sngle-
image camera cdibration method to maintain productivity. The optimization method developed
in this paper enables camera cdibration from a single image and does not suffer from a
mathematicad singularity problem. Combined with the DLT method to provide an appropriate
initid guess, the method alows rgpid automatic camera calibration. Laboratory experiments
indicate that the optimization method compares favorably with proven opticd techniques. The
method has been successfully applied to temperature- and pressure-sendtive paints and model
deformation measurements.

Acknowledgement: The authors would like to thank John C. Hoppe of NASA Langley and
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Appendix: Configuration Matrix and Observation Vector
The configuration matrix A and observation vector | in the linearized collinearity equations
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where the operator /1D, is defined as (/90, 1/90, /7€, 9/9X, ,9/1Y.,1/1Z, ) ad the
subscript denotes the target. The components of the vectors § f, / 1B, and 1, /1D, are
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Figure 8. Step calibration target plate.
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Figure 11. Result of photogrammetric mapping of transition image datato a hdf of the CFD grid
of aswept-wing model a Mach 3.5.
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